Hospital Infection Rate Classifier

Jackie Gutman, Alex Pine, Maya Rotmensch

NEW YORK UNIVERSITY

Why do HAIs matter?

- Hospital-acquired infections are the leading cause of preventable patient mortality.
- **1 in 25** hospital patients acquire an infection. Mortality rate is **12%** and higher. Each infection costs upwards of **\$17,000**.

The Data

- Using "Central Line" infections as our measure.
- Represented two ways:
 - Raw score

Binary indicator ("Above Average", or otherwise) Used Binary indicator as target. Used 5 different features, including the infection rate of previous years.

Challenges

Lots of potential training data to sift through.
Very few positive labels (only 23 of 2005).
Calculated our own, more inclusive, labels from the raw scores to reduce variance.

The Model Autoregressive Model

- Logistic Regression
- Trained only on infection rates from previous years.

The Model Logistic Regression - Full Data Model

- Dataset with all available features . AUC ~ 0.70
- no significant difference between L2 Vs. L1 regularization.
- CDC supplied labels perform very poorly.

The Model Proxy Logistic Regression Model

- Train on variable that:
 - Similar in distribution to target variable
 - More frequent
- Test on original target variable

The Model Feature Selection

• Recursive Feature Elimination shows our non-infection data does not yield meaningful features.

Deployment and Future Work

Goal: where to send our teams of infection control <u>specialists</u>

Autoregressive Model with our more inclusive binning functions.

If important to predict CDC provided labels

• Proxy Logistic Regression Model

Future Work

- Investigate more features in the hopes of finding more informative features.
- Create autoregressive models for other Infection rate measures.
- Experiment with other proxy measures.

Thank you for listening!